P-442

Exploring Functional Diversity in PEc Neurons using Single-Unit fMRI Mapping

Xufeng Zhou^{1,2}, Lei Wang^{1,2}, Michael Ortiz-Rios³, Dazhi Yin¹, Sze Chai Kwok^{1,2,4*}

1 Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics Ministry of Education, Shanghai Key Laboratory of Magnetic Resonance, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200062, China.

2 Division of Natural and Applied Sciences, Duke Kunshan University, Duke Institute for Brain Sciences, Kunshan, Jiangsu, China

3 Functional Imaging Laboratory, German Primate Center, Leibniz Institute for Primate Research, Germany

4 Shanghai Changning Mental Health Center, Affiliated Mental Health Center, Shanghai, China

Introduction

• Previous functional neuroimaging studies have highlighted the role of the posterior parietal cortex in various cognitive tasks such as episodic memory retrieval, visuo-spatial imagery and

self-processing operations. However, little research has investigated the neuronal responses in relation to whole-brain BOLD activation dynamics under naturalistic conditions such as

movie-viewing. Here, we aimed to explore the functional diversity of neurons in the PEc area of the dmPPC by combining whole-brain fMRI with single-unit recordings.

Method

Whole-brain functional maping for each individual neuron during natural viewing paradigm

- voxel 2 \bullet \bullet
 - Electrophysiological single-unit spike data from three macaques' PEc area (375 neurons) in total) and whole-brain fMRI images from two different macaques was obtained during a video watching paradigm.
 - 18 30s video clips depicting primate, non-primate and scenery were used in current study.
 - For each neuron, we computed a whole-brain correlation map by considering its shared time course with all voxels with the fMRI images under the same naturalistic movieviewing conditions.
 - All PEc neurons were clustered based on their whole-brain correlation pattern with a k-means clustering algorithm.

Results

A. Experience dependent similarity revealed by neurons' functional maps but not spiking rate

B. Neuron-voxel dynamic coupling during video viewing

a. Heatmap showing the likelihood of a voxel (only vmPFC

b. polynomial fit of an example dynamic neuron-voxel couping

a. correlation matrix of concantented 6 video lists

c. k-means reliability of concantented 6 video lists

b. correlation matrix of single 18 video clips

d. k-means reliability of single 18 video clips

chosen as ROI) being significantly correlated with a neuron. This map depicts the coupling for all 375 neurons

C. Varied patterns of dynamic coupling of PEc neuron-vmPFC voxels during video watching

D. neuron-voxel coupling decreased across repetition

a. 30 repetitive video viewing of example neuron-voxel couping r^1 r^2 r^3 r^4 r^5 r^6

b. density plot of trend coefficients of neuron-voxel coupling across 30 repetitions

mean = -0.0005

ground truth = 0

c. average trend effect showed decreased across repetition

0.04

*reliability in kmeans: two neurons are significantly more likely to be classified as same group under same experiences. k-means reliability results are replicated with correlation matrix results

r_{25} r_{26} r_{27} r_{28} r_{29} r_{30}

Conclusion

Our results characterize the functional heterogeneity of PEc neurons. The functional maps revealed they are experience-dependent. Taking vmPFC as an example site, we further

demonstrated the neurons' spike dynamics are coupled closely with vmPFC voxels and that their temporal dynamic coupling vary greatly within this population, reflecting

functional heterogeneity.

Contact:

sze-chai.kwok@st-hughs.oxon.org zhouxufeng@outlook.com